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2901. Splitting the fraction up, we have a pair of infinite
geometric series:

∞∑
n=1

( 2
5
)n +

∞∑
n=1

( 3
5
)n

.

These converge, as each has |r| < 1. So, we can
use S∞ = a

1−r , giving

S =
2
5

1 − 2
5

+
3
5

1 − 3
5

= 13
6 .

2902. (a) For sps,

1
3 x− 2

3 − 1
3 x− 4

3 = 0
=⇒ x = ±1.

The second derivative is

− 2
9 x− 5

3 + 4
9 x− 7

3 .

This has value ±2/9 at the sps. Hence, (1, 2)
is a local min and (−1, −2) is a local max.

(b) At x = 0, the curve is undefined. At y = 0, we
have x

2
3 = −1, which has no real roots, since

x2 ≥ 0. So, there are no axis intercepts.
(c) There is an asymptote at x = 0: the x− 1

3 term
tends to ±∞ as x → 0±.

(d) As x → ±∞, the second term tends to zero,
so the curve approaches y = x

1
3 . Putting the

above information together, the behaviour is

x

y

(1, 2)

(−1, −2)

2903. Assume, for a contradiction, that a polynomial of
degree n ≥ 1 exists which is equivalent to the given
algebraic fraction:

f(x) ≡ num
den .

Both numerator and denominator have degree 3.
Multiplying up by the denominator, this gives a
polynomial of degree n + 3 ≥ 4 equivalent to a
polynomial of degree 3:

f(x) × num︸ ︷︷ ︸
degree n+3

≡ den︸︷︷︸
degree 3

This is a contradiction. So, there is no polynomial
in x equivalent to the algebraic fraction.

2904. The first curve is y = x3, translated in the positive
y direction by 8 units, then with a mod function
applied to it. It intersects with the line y = 8 at
x = 0 and x = −2 3

√
2.

x

y

−2

(
−2 3

√
2, 8

)

So, the area of the shaded region is given by two
integrals, one representing the area to each side of
the dotted line above:

A =
∫ −2

−2 3√2
8 + (x3 + 8) dx +

∫ 0

−2
8 − (x3 + 8) dx

=
[

1
4 x4 + 16x

]−2

−2 3√2
+

[
− 1

4 x4
]0

−2

=
(
24 3

√
2 − 28

)
+

(
4
)

= 24
( 3
√

2 − 1
)
, as required.

2905. (a) This is a one-tailed test. We assume that the
population has distribution X ∼ N(µ, 5.112),
where µ is the population mean usage in kWh.
The hypotheses are:

H0 : µ = 11.6
H1 : µ < 11.6.

(b) Assuming H0, the mean of a sample of 49 is
distributed as follows:

X̄ ∼ N
(

11.6, 5.112

49

)
.

Solving P(X̄ < k) = 0.02 gives k = 10.10.
So, the critical region for the sample mean is
(∞, 10.10) kWh.

(c) The sample statistic is 411.4/49 = 8.396. This
lies in the critical region, so there is sufficient
evidence, at the 2% level, to reject H0. It does
seem that usage is now below the historical
value of 11.6 kWh.

(d) It is extremely unlikely that usage follows a
normal distribution. To assume that any real
population follows a normal distribution, even
approximately, is likely to be a mistake. More
often than not, such assumptions are made
for the purposes of enabling academic study
(without awareness of this fact), and not for
the drawing of useful conclusions.
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In this context, usage will almost certainly be
positively skewed, as 0 kWh is a hard lower
bound, while there are likely to be extreme
values at the upper end of the distribution.

Nota Bene

Be careful about applying mathematics. It is
a wonderful sandpit, but a terrible philosophy.
Maths is one of the finest tools for training the
mind; however, this doesn’t mean the world
is mathematical. Indeed, the living world,
and the human world in particular, really isn’t
mathematical at all. For the making of human
decisions (and under this umbrella I include
many decisions that are currently taken based
on statistical analysis), the heart is by far the
better judge.

2906. The intersections are at

y2 = 8 − y2

=⇒ y = ±2.

We can then integrate the x distance between the
curves. For y ∈ (−2, 2), 8 − y2 > y2, so the area is
given by

A =
∫ 2

−2
8 − 2y2 dy.

Using a definite integrator, this is 64
3 .

2907. There is no friction and the rope is light, so there
can be no difference in the tension either side of
the pulley. Hence, irrespective of which monkey is
actually doing the climbing, the tension exerted by
the rope must be the same on each. This is Niii,
transmitted by the rope. The force diagrams are
identical (tension upwards, weight downwards), so,
by Nii, both monkeys rise symmetrically.

Nota Bene

This is the same fact, mutatis mutandis, as if two
astronauts are floating in space and one gives the
other a push. It doesn’t matter which gives the
push, both move away with the same acceleration
and thus the same speed.

2908. For the lhs to be zero, one of the factors must be
zero. The square on the first factor has no effect;
there are roots x = 2, −3. The second factor gives
x2 = 2, −3, so x = ±

√
2. Hence, the equation has

four roots.

2909. The integral of 1
x is ln |x|. We can ignore the mod

signs, as all of the limits are positive. So, the lhs
is ln ab − ln 1, which is ln ab. Likewise, the rhs
is ln a + ln b. The equation of these is a law of
logarithms: ln ab ≡ ln a + ln b.

2910. For a counterexample, we can take any function
(other than the identity function f(x) = x) which
is self-inverse. So, consider f(x) = −x, for which
f2(x) = x. For example, x0 = 2 is a fixed point of
f2, but not of f.

2911. (a) Substituting t = 0, we get ln(2R) = 0, which
is R = 1

2 . This corresponds to 5000 cells per
millilitre of blood.

(b) Solving 1
2 e2t−t2 = 1

2 , we require 2t − t2 = 0,
which gives t = 0, 2. So, response falls to the
initial level after 2 days.

(c) Rearranging to R = 1
2 e2t−t2 , we differentiate

and set the derivative to zero for sps:

dR

dt
= (1 − t)e2t−t2

= 0.

The exponential factor cannot be zero, so t = 1
days. Substituting back in, R = 1

2 e, which
gives 1.359 × 105 ≈ 13600 white blood cells
per millimetre.

(d) To maximise the first derivative, we set the
second derivative (using the product rule) to
zero:

d2R

dt2 = (2t2 − 4t + 1)e2t−t2
= 0.

Again, the exponential term is always positive,
so 2t2−4t+1 = 0, which gives t = 0.293, 1.707.
The rate of change of response is maximised at
the first of these, so t = 0.293 days (3sf).

2912. (a) The ratio of successive terms is

cn+1

cn
= an+1bn+1

anbn

= an+1

an
× bn+1

bn

= r1r2.

This is constant, so cn is a gp.
(b) The common ratios are the same, so we can

write an = arn−1 and bn = brn−1. The sum is
then an + bn = (a+ b)rn−1, which is geometric
with first term a + b and common ratio r.

2913. Starting with the rhs,

S(a) C(b) + C(a) S(b)

≡
(
ea − e−a

)(
eb + e−b

)
4 +

(
ea + e−a

)(
eb − e−b

)
4

≡ 2eaeb − 2e−ae−b

4

≡ ea+b − e−a−b

2
≡ S(a + b), as required.
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2914. Writing it out longhand, the equation is

1
x − 2 − 1

x − 1 + 1
x

− 1
x + 1 + 1

x + 2 = 0.

Putting this over a common denominator,

x4 + x2 + 4
x5 − 5x3 + 4x

= 0.

The numerator of the fraction is quadratic in x2,
with discriminant ∆ = −15 < 0. So, the equation
has no real roots.

2915. Let the decimal part of x be 0.a1a2a3...an, where
ai represents the ith digit and an ̸= 0. We can
write this as

x = a1

101 + a2

102 + ... + an

10n
.

When we square this, the term with the largest
negative power is

a2
n

102n
.

The numerator cannot end in 0, since an ̸= 0, so
the last decimal place is the 2nth.

2916. It’s correct!

Nota Bene

It is the local relative motion of surfaces which is
opposed by friction, not the global absolute motion
of an object. Indeed, for most locomotives (trains,
cars, bicycles and human beings) it is friction that
causes motion. All driving forces (not including
propulsion forces in aircraft) are in fact frictional
forces.

2917. (a) The numerator is zero at x = 1.
(b) The area of the region is given by

A =
∫ 21

1

x − 1√
1 + 3x

dx.

Let u = 1 + 3x. This gives dx = 1
3 du, and

also x = 1
3 (u − 1). The x limits are x = 1 and

x = 21, so the u limits are u = 4 and u = 64.
Enacting the substitution,

A =
∫ 64

4

1
3 (u − 1) − 1

√
u

1
3 du

= 1
9

∫ 64

4
u

1
2 − 4u− 1

2 du

= 1
9

[
2
3 u

3
2 − 8u

1
2

]64

4

= 1
9
( 832

3 + 32
3

)
= 32, as required.

2918. Angles θ = 2πi
3 radians (0, 120, 240°) are periodic

in [0, 2π). Hence, the three centres (cos θ, sin θ)
have rotational symmetry order three around the
origin.

x

y

So, the centres lie at the vertices of an equilateral
triangle, which makes the circles equidistant.

2919. Rearranging to x2 = y + 1, we substitute for x2:

2x6 − 7x4 + 7x2 − 2
= 2(y + 1)3 − 7(y + 1)2 + 7(y + 1) − 2
≡ 2y3 − y2 − y.

2920. We condition on the placement of the first bishop,
in terms of the distance from the edge of the
board. The cases are {0, 1, 2, 3} squares from the
edge, of which there are {28, 20, 12, 4} squares.
The number of squares threatened in each case is
{7, 9, 11, 13}. This gives the probability as

28 · 7
64 · 63 + 20 · 9

64 · 63 + 12 · 11
64 · 63 + 4 · 13

64 · 63 = 5
36 .

2921. Differentiating the equation of a parabola,

y = ax2 + bx + c

=⇒ dy

dx
= 2ax + b.

Substituting in, we require

2ax + b + ax2 + bx + c ≡ x + 1.

Equating coefficients of x2 gives a = 0. Hence, if
there is a solution of the form y = ax2 + bx + c, it
must be y = bx + c, which is not a parabola.

2922. The lhs may be factorised, giving

3x(3x − 1)(32x + 1) > 0.

The left-hand and right-hand factors are always
positive, so we need only consider 3x−1 > 0, which
holds for x > 0. So, the solution set is (0, ∞).

2923. Using the change of base formula, we can write

y = loga x ≡ logb x

logb a
≡ logb x × loga b.

Hence, the curve loga x is a stretch, scale factor
loga b in the y direction, of the curve y = logb x.
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2924. (a) A counterexample is y = x−2. The derivative
is dy

dx = −x−1, which changes sign either side
of x = 0. But x = 0 is not a stationary point,
as the curve (and its gradient) are undefined
there.

(b) Consider y = x4, at the origin. The second
derivative 12x2 is zero, but it doesn’t change
sign: it is positive both sides of x = 0. Hence,
the stationary point at the origin is an (extra
flattened) local minimum.

2925. (a)
∫ 1

−1
x3 − x dx = 0:

−
+

x

y

(b)
∫ e

0
ln x dx = 0:

−

+
x

y

(c) Putting the integrand in harmonic form,∫ 2π

0

√
2 sin

(
x − π

4

)
dx = 0 :

−

+

− x

y

2926. Equating the squared lengths of the chords,

a2 + a4 =
(
1 − a

)2 +
(
1 − a2)2

=⇒ a2 + a − 1 = 0

=⇒ a = −1 ±
√

5
2 .

Since 0 < a < 1, we reject the negative root. This
gives

a = −1 +
√

5
2 .

2927. Differentiating implicitly,

1
2 (x + y)− 1

2
(
1 + dy

dx

)
− 1

2 (x − y)− 1
2
(
1 − dy

dx

)
= 0.

Multiplying by 2 and setting dy
dx = 2,

3(x + y)− 1
2 + (x − y)− 1

2 = 0.

Both terms are strictly positive, so they cannot
add to give zero. So, there is no point on the curve
with gradient 2, and therefore no line of the form
y = 2x + k is tangent to the curve.

2928. The force diagram, for limiting equilibrium, is

mg

F

R

θ

Perpendicular to the slope, R = mg cos θ. And
parallel to the plane, F = mg sin θ. At the angle
of friction θ, friction is maximal, at Fmax = µR.
This gives

µ = F

R

= mg sin θ

mg cos θ

≡ tan θ.

Hence, the angle of friction is θ = arctan µ.

Nota Bene

“Limiting equilibrium” is equilibrium, with the
added proviso that any more force in a particular
direction would push the object out of equilibrium.
In the type of limiting equilibrium in this question,
friction is maximal, but the object remains at rest.

2929. There are 9! orders of nine objects. Listing these,
we partition the numbers by position:

1,2,3 4,5,6 7,8,9
1,2,3 4,5,6 7,9,8
1,2,3 4,5,6 8,7,9

... ... ...

There are 3! orders within each set of 3. Hence, in
the list of 9! orders, we will overcount by a factor
of 3! × 3! × 3!. This gives the number of ways as

9!
3! × 3! × 3! = 1680.
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2930. Adding the equations, 2s = (u + v)t. Subtracting
the equations, 0 = (u − v)t + at2. We rearrange
these to

v + u = 2s

t
,

v − u = at.

Multiplying the equations,

(v + u)(v − u) = 2as

=⇒ v2 = u2 + 2as, as required.

2931. Writing the series out longhand, we have(
a − b

)(
an−1 + an−2b + ... + abn−2 + bn−1)

.

Multiplying out the brackets, this is

an+ an−1b + ... + a2bn−2 + abn−1

−
(
an−1b + an−2b2 + ... + abn−1 + bn

)
.

All but two terms cancel, leaving an − bn.

Nota Bene

This result is the generalisation of the difference of
two squares: a difference of two nth powers an −bn

always has a factor of a − b.

2932. (a) By the chain rule, the first derivative is

dy

dx
= cos(ln x)

x
.

Evaluating at x = 1, this gives m = 1. The
equation of the tangent is y = x − 1.

(b) The second derivative is

d2y

dx2 = − sin(ln x) + cos(ln x)
x2 .

On (1, 2], the range of ln x is (0, ln 2]. Since
ln 2 < π

2 , both sin(ln x) and cos(ln x) are +ve
over the given domain; x2 is also +ve, so the
second derivative is negative. Therefore, the
curve is concave.

(c) The curve is concave on [1, 2], so, since dy
dx = 1

at x = 1, we know that dy
dx < 1 for x ∈ (1, 2].

This puts the curve below T .
(d) The region under T , over the domain [1, 2], is

a triangle, with base 1 and height 1.

1 2 x

Its area is 1
2 . Since the curve lies under T , we

know that I < 1
2 .

2933. Starting with the rhs,

1 + tan2 θ

1 − tan2 θ

≡
1 + sin2 θ

cos2 θ

1 − sin2 θ
cos2 θ

.

Multiplying top and bottom by cos2 θ, this is

cos2 θ + sin2 θ

cos2 θ − sin2 θ

≡ 1
cos 2θ

≡ sec 2θ, as required.

2934. The first counter can be placed wlog. Then, the
probability that the second is in a different row
and column is 4

8 . Then the probability that the
third is also in a different row and column is 1

7 .
So, the probability is p = 4

8 × 1
7 = 1

14 .

Alternative Method

The possibility space consists of 9C3 equally likely
ways of placing the counters. In each successful
outcome, there is one counter in each row. There
are three locations in the first row, then two in the
second row and one in the third. This gives

p = 3 × 2 × 1
9C3

= 1
14 .

2935. The error is not with the product rule, but rather
with (a failure to use) the chain rule.
The factor cos(3x + 1) has not been differentiated
correctly. By the chain rule, its derivative should
be −3 sin(3x + 1), the derivative of (3x + 1) being
3. A corrected version is:

y = ex cos(3x + 1)

=⇒ dy

dx
= ex cos(3x + 1) − 3ex sin(3x + 1).

2936. The force diagrams are as follows:

3ma

3mg

T1

am

mg

T2

(a) Using Niii, the total downwards force on the
pulley is R = T1 + T2, so the tensions differ by
1
4 R = (T1 + T2). Clearly T1 must be larger, so

T1 − T2 = 1
4 (T1 + T2)

=⇒ 3
4 T1 = 5

4 T2

=⇒ 3T1 = 5T2, as required.
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(b) The vertical equations of motion are

1 3mg − T1 = 3ma,

2 T2 − mg = ma.

Taking 3 × 1 + 5 × 2 ,

9mg − 3T1 + 5T2 − 5mg = 9ma + 5ma

=⇒ 4mg = 14ma

=⇒ a = 2
7 g, as required.

2937. Assume, for a contradiction, that c is even and a

is odd, where a2 + b2 = c2. Then b must also be
odd. Expressing this algebraically, for p, q, r ∈ N,

a2 + b2 = c2

=⇒ (2p + 1)2 + (2q + 1)2 = (2r)2

=⇒ 4(p2 + p + q2 + q) + 2 = 4r2.

The lhs is two greater than a multiple of 4, while
the rhs is a multiple of 4. This is a contradiction.
So, if c is even, then so are a and b.

2938. Each rhs has a factor of x. Hence, (0, 0) satisfies
the equations. If x ̸= 0, then we can make y

x the
subject of each equation. Equating these,

ex = 6e−x − 1
=⇒ e2x + ex − 6 = 0
=⇒ (ex + 3)(ex − 2) = 0
=⇒ ex = −3, 2.

Since ex > 0, this gives x = ln 2. So, the solution
points are (0, 0) and (ln 2, 2 ln 2).

2939. (a) By the quotient rule, the derivative is

dy

dx
= −10

(x − 2)2 .

Evaluating at x = 0, we get m = − 5
2 . So, the

equation of the tangent is

y − 1 = − 5
2 (x − 0)

=⇒ y = 1 − 5
2 x.

(b) The roots of the equation f(x) = f1(x) are the
x coordinates of the intersections of y = f(x)
and y = f1(x). Since y = f ′(x) is tangent to
y = f(x), there is a point of intersection which
is a point of tangency. At a point of tangency,
there is a repeated root.

2940. The boundary equations of these inequalities are

(x + y)2 = a,

(x − y)2 = a.

Taking square roots,

x + y = ±
√

a,

x − y = ±
√

a.

These are two pairs of parallel lines.

x

y

The axis intercepts are at ±
√

a. So, the area of
the square is 4 × 1

2
(√

a
)2 = 2a.

2941. We assume that rotations and reflections of the
bracelet are indistinguishable. Then, by number
of white beads, the first four configurations are

(0) : bbbbb
(1) : wbbbb
(2) : wwbbb, wbwbb.

There are then four symmetrical configurations
with white and black interchanged. Hence, there
are eight configurations overall, as required.

2942. Differentiating implicitly,

x2 −
√

x + y = 1

=⇒ 2x − 1
2 (x + y)− 1

2

(
1 + dy

dx

)
= 0

=⇒ 4x(x + y) 1
2 −

(
1 + dy

dx

)
= 0

=⇒ dy

dx
= 4x(x + y) 1

2 − 1.

So, dy

dx
= 4x

√
x + y − 1, as required.

2943. (a) Together, the four curved sections make up one
full circle. So, the total length is

l = 4 × 2r + 2πr

≡ 2r(4 + π).

(b) By Niii, the two instances of any frictional
force between the upper two logs must act
one vertically upwards and the other vertically
downwards. But the situation is symmetrical,
so this asymmetry is impossible. Hence, the
frictional forces must be zero.

(c) Since there is no vertical friction acting on the
upper logs, the only vertical forces are weight
and tension. Vertical equilibrium for one of
the upper logs is R − W − 2W = 0, giving
R = 3W .
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2944. The possibility space, with the successful region
shaded, is:

x

y

The angle of inclination of the mod graph, in the
positive quadrant, is

arctan
√

5 − 2
√

5 = π
5 .

So, the angle subtended at the origin by the shaded
area is 3π

5 . For the probability, we divide the area
of the successful region by the area of the circle,
which gives p = 3π

5 ÷ 2π = 3
10 .

2945. Assume, for a contradiction, that four distinct
points on the cubic graph y = f(x) lie on the
parabola y = g(x). Then the equation f(x) = g(x)
has four distinct roots. But this equation is cubic,
so has at most three roots. This is a contradiction.
Hence, no four distinct points on a cubic y = f(x)
lie on the same parabola y = g(x). qed.

2946. Integrating by inspection,∫
f ′(x)ef(x) dx = ef(x) + c.

The justification is differentiation of ef(x) + c by
the chain rule.

2947. Completing the square, the circle is

(x − 1)2 + (y + 2)2 = 1.

So, it has centre (1, −2) and radius 1. The mod
graph has a vertex at (3, 0), and gradient ∓2.
Sketching these,

x

y

The perpendicular to the lh branch which passes
through the centre (dashed above) has equation
y + 2 = 1

2 (x − 1). At x = 3, this is at y = −1,
which is below the vertex of the mod graph. Hence,
the vertex is the closest point to the circle.
By Pythagoras, the distance from the centre to the
vertex is 2

√
2, so the shortest distance between the

graphs is 2
√

2 − 1.

2948. (a) The limiting total displacement is given by the
area under the above graph from t = 0 to
t = T , in the limit that T → ∞. This is

S =
∫ ∞

0

1
et + 1 dt

Let u = et + 1, so du = et dt. Replacing et in
this,

dt = 1
u − 1 du.

The u limits are u = 2 to u = ∞. Enacting
the substitution,

S =
∫ ∞

2

1
u(u − 1) du.

(b) For partial fractions,

1
u(u − 1) ≡ A

u
+ B

u − 1
=⇒ 1 ≡ A(u − 1) + Bu.

Equating constant terms, A = −1; equating
coefficients of u, B = 1. So, the integral is

S =
∫ ∞

2

1
u − 1 − 1

u
du

=
[

ln |u − 1| − ln |u|
]∞

2

=
[

ln
∣∣ u−1

u

∣∣ ]∞

2
.

At the upper, infinite limit, u−1
u tends to 1.

Since ln 1 = 0,

S = (0) −
(
ln 1

2
)
,

= ln 2, as required.

2949. If we roll the m-sided die first, then its value can
be observed without loss of generality. Having
noted this value, the probability that the n-sided
die shows the same score is 1

n .

Alternative Method

The possibility space is an m × n grid of equally
likely outcomes. The successful outcomes lie on
the leading diagonal. Since m < n, this consists of
m outcomes:

So, the probability is m
mn , which is 1

n .
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2950. This is false. The function f(x) = 1/x has a sign
change at x = 0, but 1/x is undefined at x = 0. So,
a = −1, b = 1 and f(x) = 1/x is a counterexample
which disproves the student’s claim.

Nota Bene

Although it doesn’t hold in general, the student’s
statement does hold for functions which have no
discontinuities, such as polynomials.

2951. Using the first Pythagorean trig identity,

sin3 x + cos2 x + 1 = 0
=⇒ sin3 x − sin2 x + 2 = 0.

This is a cubic in sin x. Using a polynomial solver,
sin x = −1. Hence, x = 3π

2 .

2952. Assume, for a contradiction, that log3 5 = p/q, for
p, q ∈ N. Rewriting this as an index statement,

3
p
q = 5.

Raising both sides to the power q,

3p = 5q.

The lhs has no prime factors of 5, while the rhs
has no factors of 3. Hence, p = q = 0. This is a
contradiction. Therefore, log3 5 is irrational.

2953. (a) Splitting the integral up,∫ 1

−1
f(x) dx =

∫ 0

−1
f(x) dx +

∫ 1

0
f(x) dx.

Since the curve has rotational symmetry, the
values of these two integrals are −k and k. So,
the value of the original integral is zero.

(b) Rotational symmetry gives f(−x) ≡ − f(x), so
that f(−2x) ≡ − f(2x). Hence, the integrand
is 2 f(2x). Let u = 2x, which gives du = 2 dx.
Enacting the substitution, the integral is now∫ 1

0
f(u) du.

This has value k.

2954. By the chain rule,

dxn

dx1
≡ dxn

dxn−1
· dxn−1

dxn−2
· ... · dx2

dx1
.

Each of the derivatives on the rhs has value 2. So,

dxn

dx1
= 2n−1.

Integrating with respect to x1,

xn = 2n−1x1 + c, as required.

2955. (a) The prosecutor’s argument relies on equal
numbers of each kind of car. If there are, for
example, many more hatchbacks than saloons,
then a car identified as a saloon is more likely
to be a hatchback wrongly identified than a
saloon correctly identified.

(b) Conditioning on the type of car, the possibility
space is

1
4 S

3
4 H

0.96 idS

idH

0.04 idS

idH

Restricting the possibility space to only cars
identified as saloons,

P(H | idS) =
3
4 × 0.04

1
4 × 0.96 + 3

4 × 0.04
= 1

9 .

The true probability is 1 in 9, not 1 in 25.

2956. The denominator of the fraction is a quadratic in
ln x. Completing the square,

1 − ln x + (ln x)2 ≡
(

ln x − 1
2
)2 + 3

4 .

Since ln x can take the value 1
2 , the minimum value

of this expression is 3
4 . Hence, the maximum value

of the original fraction is 4
3 .

2957. The +c translates the entire problem by vector cj.
This doesn’t affect the areas. So, we can set c = 0
and proceed without loss of generality. Consider
y = x3 − x.

x

y

This curve’s point of inflection is at the origin. The
derivative is dy

dx = 3x2 − 1, so the tangent at the
origin is y = −x and the normal is y = x. Solving
for intersections,

x3 − x = x

=⇒ x(x2 − 2) = 0
=⇒ x = 0, ±

√
2.

Cubics are rotationally symmetrical around their
point of inflection, so the areas enclosed must be
equal. In square units, each region has area

A =
∫ √

2

0
x − (x3 − x) dx

=
[
x2 − 1

4 x4
]√

2

0

= (2 − 1) − (0 − 0)
= 1, as required.
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2958. In completed-squared form, the graph is

y = −
(

x − a + b

2

)2
+ (a − b)2

4 .

Equating to zero for roots,

−
(

x − a + b

2

)2
+ (a − b)2

4 = 0

=⇒ x − a + b

2 = ±a − b

2
=⇒ x = a + b

2 ± a − b

2
≡ a, b, as required.

2959. (a) Lines 2 and 3 have gradients m2 = 2/5 and
m3 = −5/2. So, we have a right-angled triangle
with line 1 as the hypotenuse.

(b) Vertex A is the intersection of the first two
lines. Solving simultaneously, it is (0, −9/5).

(c) The sides through A are at arctan 2/5 above
and arctan 1 below the positive x direction.
Hence, the total angle is 45° + arctan 2/5.

(d) The ratio of the two perpendicular sides is
given by tan (45° + arctan 2/5) = 7/3.

(e) Let d > 0 be the length of the shortest side.
The area is

1
2 d × 7

3 d ≡ 7
6 d2.

Setting this to 406
75 , we solve to get d = 2

√
29

5 .
Resolving this distance into components,

x = d cos(arctan 2/5) = 2,

y = d sin(arctan 2/5) = 4/5.

Hence, triangle T has a vertex at (2, −1). This
gives k = 8.

2960. There are 7! arrangements of piz1z2az3z4. In the
list of 7! arrangements, every word (e.g. pizzazz)
will appear 4! times, once for each arrangement of
z1z2z3z4. Hence, we overcount by a factor of 4!.
This gives 7!

4! = 210.

2961. In factorised form, the graph is

y = x4(x2 + 1)(x − 1)(x + 1).

This gives a single root at x = −1, a quadruple
root (turning point) at x = 0 and a single root
at x = 1. The quadratic factor has no real roots.
The overall shape is a positive polynomial of even
degree:

x

y

1−1

2962. The given facts are

ar = a + d,

ar2 = a + 4d.

Eliminating d, we know that

ar2 − 4ar + 3a = 0
=⇒ a(r2 − 4r + 3) = 0.

We can rule out a = 0: it would give d = 0, and
we are told that the ap is non-constant. So,

r2 − 4r + 3 = 0
=⇒ r = 1, 3.

The gp is also non-constant, so we reject r = 1.
This leaves r = 3.

2963. The curve y = x2√
x + 2 has domain of definition

[−2, ∞), a single root at x = −2 and a double root
at x = 0. These are consistent with the graph. For
sps,

2x(x + 2) 1
2 + 1

2 x2(x + 2)− 1
2 = 0

=⇒ x
(
2(x + 2) + 1

2 x
)

= 0
=⇒ x = 0, − 8

5 .

The fact that y ≥ 0 everywhere guarantees that
the sp at x = −8/5 is a maximum, and that the
sp at the origin is a minimum. The behaviour
x → ∞, y → ∞ is also correct. So, the equation is
consistent with the graph shown.

2964. Consider the e and the a as a single item. There
are 4! ways of rearranging this item with the other
three letters. For each of these ways, we can write
ea or ae. This gives 24 × 2 = 48 arrangements, as
required.

2965. This is a quadratic in
√

x:

3
√

x + 2√
x

= 7

=⇒ 3x − 7
√

x + 2 = 0
=⇒ (3

√
x − 1)(

√
x − 2) = 0

=⇒ x = 1
9 , 4.

2966. The mean of X ∼ B(6, 0.27) is 6 × 0.27 = 1.62.

The integer closest to the mean is 2, but the mode
is not 2, as shown below:

P(X = 1) ≈ 0.34,

P(X = 2) ≈ 0.31.

Hence, X ∼ B(6, 0.27) disproves the claim.
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2967. The constant term 33 has factors 3 and 11. So, we
look for a factorisation of the form

x4 + 2x3 + 15x2 + 14x + 33
≡ (x2 + ax + 3)(x2 + bx + 11).

Equating coefficients of x3 and x,

a + b = 2,

3b + 11a = 14.

Solving these, we get a = b = 1. The factorisation
can be verified with the x2 term.
Looking for roots, the discriminants are ∆1 = −11
and ∆2 = −120. These are both negative, so the
quartic has no real roots.

2968. (a) The force diagram is

mg

Rfloor

Rwall

µRfloor
θ

A

Taking the ladder to have length 2l,

↕ : Rfloor − mg = 0
↔ : Rwall − µRfloor = 0
↷
A : Rwall · 2l sin θ − mg · l cos θ = 0.

Solving, we get Rfloor = mg, so Rwall = µmg.
Dividing by lmg, the moments equation is

2µ sin θ = cos θ

=⇒ µ = 1
2 cot θ.

This value is limiting friction, so is a lower
bound on µ. Hence, µ ≥ 1

2 cot θ, as required.
(b) As θ → 0, the value of cot θ and hence the

minimum value of µ grows asymptotically. In
other words, if the ladder is nearly horizontal,
a very large coefficient of friction is needed to
keep it stable.

2969. By the reverse chain rule,∫
cos x sin2 x dx = 1

3 sin3 x + c.

Nota Bene

Integrations by inspection are best understood in
reverse, by differentiating the answer. For further
elucidation (the long way round), you could retry
this integral with the substitution u = sin x.

2970. Writing everything in terms of 2x,

2x+1 + 4x+1 = 8x + 15

=⇒
(
2x

)3 − 4 ·
(
2x

)2 − 2 ·
(
2x

)
+ 15 = 0.

This is a cubic in 2x. The factor theorem tells us
that, since x = log2 3 is a root, (2x − 3) must be a
factor. Taking it out,(

2x − 3
)((

2x
)2 − 2x − 5

)
= 0.

Looking for roots of the quadratic factor,

2x = 1±
√

21
2

=⇒ x = log2
1±

√
21

2

= log2
(
1 ±

√
21

)
− 1.

Since log2 cannot take negative inputs, only the
positive of these produces a root. So, the solution
is

x = log2 3, log2
(
1 +

√
21

)
− 1.

2971. (a) The standard trapezium rule gives

A1 = 1
2 · 1

2
(
0 + 2 · 1

4 + 1
)

= 0.375.

(b) Let the central point be (p, p2). Equating the
squared lengths of the chords from (0, 0) and
(1, 1),

p2 + p4 =
(
1 − p

)2 +
(
1 − p2)2

=⇒ p2 + p − 1 = 0

∴ p = −1+
√

5
2 .

Using this value, the approximation is

A2 = 1
2 p

(
p2)

+ 1
2 (1 − p)

(
p2 + 1

)
≈ 0.382.

The true value is 0.3̇, so the approximation
A2 ≈ 0.382 is further from the true value than
A1 = 0.375. The standard trapezium rule gives
the better approximation.

2972. Using the parametric differentiation formula,

dy

dx
≡

dy
dt
dx
dt

= −4 sin 2t

cos t
.

The gradient of the vector i + 4j is 4:

−4 sin 2t

cos t
= 4

=⇒ − sin 2t = cos t

=⇒ 2 sin t cos t + cos t = 0
=⇒ cos t(2 sin t + 1) = 0
=⇒ cos t = 0 or sin t = − 1

2 .

The first root t > 0 is at t = π
2 .
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2973. The curve is a positive sextic. Setting the first
derivative to zero for sps,

6x5 − 2x = 0
=⇒ x(3x4 − 1) = 0
=⇒ x = 0, ± 4

√
1/3.

Testing these values, the sps are at

x 0 4
√

1/3 − 4
√

1/3

y 1 0.6151 0.6151

Since all of the sps have positive y values, and the
curve is a positive polynomial of even degree, it
doesn’t cross the x axis:

x

y

2974. Five regions are shaded, so the possibility space is
a set of 10C5 = 252 equally likely outcomes. For
success, every other region is shaded, so there are
only two successful outcomes:

Hence, the probability is 2
252 = 1

126 .

2975. (a) The graph of y = ln x is

x

y

(b) The derivative is y = 1
x . Setting this to 1 gives

x = 1. At this point, the tangent is y = x − 1.
(c) Since y = ln x is concave everywhere (curving

downwards), any line of the form y = x + k,
where k > −1, will not intersect y = ln x.

x

y

This includes the line y = x, as shown above.
So, since ln x = x has no roots, the iteration
xn+1 = ln xn has no fixed points.

2976. The mean of the ap must be the interior angle of a
regular hexagon, which is 2π/3 radians. The lower
bound (which is not attainable) on the smallest
angle is 0, which is 2.5 common differences away
from the mean. This puts the upper bound on the
common difference as

d = 2π
3 ÷ 2.5 = 4π

15 .

Hence, the set of possible values for the third
largest angle is [2π/3, 2π/3 + d/2). Substituting for
d, this simplifies to [2π/3, 4π/5).

2977. If each sample is a subpopulation with small
spread and no correlation, yet the sample means
(x̄1, ȳ1) and (x̄2, ȳ2) lie far away from each other
along a line of positive gradient, then the combined
sample will have positive correlation, even though
the individual samples do not:

x

y

2978. This is a geometric series with first term a = 1,
common ratio r = 3 and k + 1 terms. Using the
standard formula, the sum is

S = a(rn − 1)
r − 1

= 3k+1 − 1
2 .

2979. The fourth-root graph is akin to the square-root
graph. We then translate by vector 3i:

x

y

3

2980. (a) Vertically, −1 = (3 sin θ)t − 5t2. Horizontally,
2 = (3 cos θ)t. Substituting the latter into the
former,

−1 = 3 sin θ

(
2

3 cos θ

)
− 5

(
2

3 cos θ

)2

=⇒ −1 = 2 tan θ − 20
9 cos2 θ

=⇒ 20 sec2 θ − 18 tan θ − 9 = 0.
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(b) Substituting the identity sec2 θ ≡ tan2 θ + 1
gives a quadratic in tan θ:

20(tan2 θ + 1) − 18 tan θ − 9 = 0
=⇒ 20 tan2 θ − 18 tan θ + 11 = 0.

This has discriminant

∆ = 182 − 4 · 20 · 11 = −556 < 0.

The quadratic has no real roots, so it is not
possible to reach the target.

2981. There are 26 = 64 ways of colouring the six edges.
Of these, there are six ways with rrrrbb (it can
be cycled to start at any one of six edges) and six
with bbbbrr. Hence, p = 12

64 = 3
16 .

2982. When |x − 1| is small, then x is close to 1. At the
point (1, 0), the curve y = ln x is approximated
by its tangent at that point. The derivative is
dy
dx = 1

x , which gives m = 1, so the equation of
the tangent is y = x − 1. Hence, when |x − 1| is
small, ln x ≈ x − 1.

2983. We integrate the jerk three times. The result is
polynomial, so each constant of integration is the
initial value of the variable in question. Using
Newton’s dot notation for the time derivative:

x = j

=⇒ ẍ = a0 + jt

=⇒ ẋ = v0 + a0t + 1
2 jt2

=⇒ x = x0 + v0t + 1
2 a0t2 + 1

6 jt3.

2984. For t ̸∈ (−1, 1), the area is 0. Within (−1, 1), the
shaded region is an equilateral triangle of linearly
increasing/decreasing side length. The area of an
equilateral triangle is

A =
√

3
4 l2,

which is maximised, in our example, at l = 1. This
occurs at t = 0, when the triangles overlap fully.
So, the graph of A against t is as follows:

t

A

−1 1

√
3

4

2985. (a) ln 1
x ≡ ln x−1 ≡ − ln x.

(b) loge2 x ≡ log√
e2

√
x ≡ 1

2 ln x.

(c) log 1
e

x ≡ log 1
e

−1 ≡ x−1 ln x−1 ≡ − ln x.

2986. The endpoints of the chord have coordinates A :
(1, 0) and B : (−1, 2). The equation of chord AB

is y = −x + 1. The equation for intersections is

x2 − x3 = −x + 1
=⇒ x3 − x2 − x + 1 = 0
=⇒ (x − 1)2(x + 1) = 0.

Since (x − 1) is a squared factor, x = 1 is a double
root, which signifies a point of tangency.

2987. Each equation is a quadratic in t:

t2 − 2t + x = 0,

t2 + 2t − y = 0.

Equating the two expressions for t given by the
quadratic formula, we get the following, in which
the ± signs are independent of each other:

2 ±
√

4 − 4x

2 = −2 ±
√

4 + 4y

2
=⇒ 2 ±

√
1 − x = ±

√
1 + y.

Nota Bene

Not all of the combinations of ± signs produce
points. 2 +

√
1 − x = −

√
1 + y doesn’t, as the

lhs is positive and the rhs isn’t. But this doesn’t
mean the Cartesian equation is wrong. Between
them, the other three options cover all points on
the original curve (which is a parabola). Sketching
with a graphing calculator is instructive.

2988. Starting with the rhs,

TaTb + Ta−1Tb−1

≡ 1
2 a(a + 1) · 1

2 b(b + 1) + 1
2 (a − 1)a · 1

2 (b − 1)b
≡ 1

4 ab
(
(a + 1)(b + 1) + (a − 1)(b − 1)

)
≡ 1

4 ab(2ab + 2)
≡ 1

2 ab(ab + 1)
≡ Tab, as required.

2989. (a) The lengths of the rectangle are p and 1 − p2.
Hence, the area is given by A = p−p3. This is
a negative cubic, so, as p → ∞, A → −∞ and
is therefore unbounded.

(b) Setting A = 0, we solve to find p = 0, ±1. But
p ∈ [0, ∞), so the area is zero for two values,
p = 0, 1.

(c) To optimise the area, we set its derivative to
zero:

dA

dp
= 1 − 3p2 = 0

∴ p = 1√
3 .

Substituting in, Amax = 2
√

3
9 .
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(d) For p ∈ [0, ∞), the graph of A against p is a
negative cubic with roots at p = 0, 1, and a
local maximum in between:

p

A

1

(
1√
3 , 2

√
3

9

)

2990. Differentiating the function,

f(x) = x2 − ex2
+ 2

=⇒ f ′(x) = 2x − 2xex2
.

This gives f ′(0) = 0, so the graph y = x2 − ex2 + 2
has a stationary point at x = 0. The N-R method
looks for an intersection of the tangent with the x

axis. But if the gradient is zero then there is no
such intersection. Hence, the method breaks down
when starting at such a stationary point.

2991. (a) The exponential function x 7→ ex differentiates
to itself. And e0 = 1. Hence, every derivative
of the exponential function is 1 at x = 0.

(b) Comparing the derivatives of g at zero,

g(0) = a0 = 1,

g′(0) = a1 = 1,

g′′(0) = 1
2 a2 = 1.

So, a0 = 1, a1 = 1 and a2 = 1
2 .

(c) The exponential graph y = ex (shown solid)
and its approximation y = 1 + x + 1

2 x2 are:

x

y

1

2992. Call the perpendicular lengths a, b:
1
2 ab = 60 =⇒ ab = 120,

a + b +
√

a2 + b2 = 40.

Rearranging and squaring the latter,√
a2 + b2 = 40 − a − b

=⇒ a2 + b2 = 1600 + a2 + b2 − 80a − 80b + 2ab

=⇒ 800 − 40a − 40b + ab = 0.

Substituting ab = 120, we get 920−40a−40b = 0,
so 23 = a + b. Solving this simultaneously with
ab = 120 gives the side lengths as (8, 15, 17).

2993. The graphs y = f(x) and y = g(x) intersect at
x = k. Furthermore, they have the same gradient
at this point, meaning that they are tangential.
So, the equation f(x) = g(x) must have a double
root at x = k. And the equation f(x) = g(x) is at
most a cubic, which leaves only one possible root
elsewhere. Hence, f(x) = g(x) has at most two
distinct roots.

2994. (a) The denominator is zero at x = 5.
(b) Expressing the improper fraction properly:

5 − 2x − 4x2

5 − x
≡ 4x + 22 + 105

x − 5 .

As x → ±∞, the fraction tends to zero, leaving
an oblique asymptote at y = 4x + 22.

Alternative Method

The polynomial long division in the above is

4x + 22
− x + 5

)
− 4x2 − 2x + 5

4x2 − 20x

− 22x + 5
22x − 110

− 105
2995. (a) Looking for intersections,

(x + 1/2)2 − x − c2 − 1
4 = 0

=⇒ x2 + x + 1
4 − x − c2 − 1

4 = 0
=⇒ x2 − c2 = 0
=⇒ x = ±c.

So, x1 = −c and x2 = c. Hence, x2 − x1 = 2c,
as required.

(b) The distance h, in the y direction, between the
parabola and the line is given by

h = x + c2 + 1
4 −

(
x + 1

2
)2

≡ c2 − x2.

So, the vertical distance between the curve and
the line is maximised at the y axis, at h = c2.

(c) Using (b), the shaded region is smaller than
the parallelogram shown:

x

y

c−c

This parallelogram has area 2c × c2. So, the
area of the shaded region satisfies A < 2c3.
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2996. Conditioning on the choice of coin, the possibility
space is

1
2 F

B

1
2 H

T
3
4 H

T

Restricting the possibility space to heads,

P(biased | heads) =
1
2 × 3

4
1
2 × 1

2 + 1
2 × 3

4
= 3

5 .

2997. Using log rules,
logp2

(
pn

)
× logpn p

≡ n logp2 p × logpn p

≡ n × 1
2 × 1

n

≡ 1
2 .

Nota Bene

The evaluations from the second line to the third
are done by definition. What do you have to raise
p2 by to get p? Answer: 1/2. What do you have to
raise pn by to get p? Answer: 1/n.

2998. Assuming (limiting) equilibrium, the tension in the
string is m3g. For the upper block, the forces are:

m1

R1

m1g

T = m3gF1

Horizontally, F1 is also m3g. The reaction between
the stacked blocks is R1 = m1g. Since we are in
limiting equilibrium, this gives

m3g = µ1m1g

=⇒ µ1 = m3

m1
.

The forces on the lower block are:

m2

R2

m2g + R1

F1F2

Vertically, R2 = m1g + m2g. And the frictional
force F1 rightwards is m3g. So, F2 is also m3g.
For limiting equilibrium,

m3g = µ2(m1g + m2g)

=⇒ µ2 = m3

m1 + m2
.

Collating the results, both frictions are limiting if

µ1 = m3

m1
, µ2 = m3

m1 + m2
.

2999. For partial fractions, we require

3x + 3
x2 + 3x

≡ A

x + 3 + B

x

=⇒ 3x + 3 ≡ Ax + B(x + 3).

Setting x = 0, −3 gives B = 1 and A = 2. So,

3x + 3
x2 + 3x

≡ 2
x + 3 + 1

x
.

We can now integrate:∫ 2
x + 3 + 1

x
dx

≡ 2 ln |x + 3| + ln |x| + c

≡ ln(x + 3)2 + ln |x| + c

≡ ln
∣∣x(x + 3)2∣∣ + c

≡ ln
∣∣x3 + 6x2 + 9x

∣∣ + c, as required.

3000. The numerator is never zero, so the curve has no
x axis intercepts. It crosses the y axis at (0, 1).
By the quotient rule, the first derivative is

dy

dx
= ex(x − 1)

(x + ex)2 .

Setting the numerator to zero for sps gives x = 1,
where y = e

1+e ≈ 0.73.
As x → ∞, x becomes negligible compared to ex,
so the curve tends asymptotically to y = 1.

x

y

1 (
1, e

1+e

)

End of Volume III


